Natural and Artificial Mn4Ca Cluster for the Water Splitting Reaction
نویسندگان
چکیده
منابع مشابه
Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting.
Photosynthetic water oxidation, where water is oxidized to dioxygen, is a fundamental chemical reaction that sustains the biosphere. This reaction is catalyzed by a Mn4Ca complex in the photosystem II (PS II) oxygen-evolving complex (OEC): a multiprotein assembly embedded in the thylakoid membranes of green plants, cyanobacteria, and algae. The mechanism of photosynthetic water oxidation by the...
متن کاملPhoto corrosion of titania nanotubes within water splitting reaction
Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...
متن کاملPhoto corrosion of titania nanotubes within water splitting reaction
Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...
متن کاملArtificial Water Splitting: Ruthenium Complexes for Water Oxidation
This thesis concerns the development and study of Ru-based water oxidation catalysts (WOCs) which are the essential components for solar energy conversion to fuels. The first chapter gives a general introduction about the field of homogenous water oxidation catalysis, including the catalytic mechanisms and the catalytic activities of some selected WOCs as well as the concerns of catalyst design...
متن کاملArtificial photosynthesis: understanding water splitting in nature.
In the context of a global artificial photosynthesis (GAP) project, we review our current work on nature's water splitting catalyst. In a recent report (Cox et al. 2014 Science 345, 804-808 (doi:10.1126/science.1254910)), we showed that the catalyst-a Mn4O5Ca cofactor-converts into an 'activated' form immediately prior to the O-O bond formation step. This activated state, which represents an al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ChemSusChem
سال: 2017
ISSN: 1864-5631
DOI: 10.1002/cssc.201701371